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Methods for Scaling to Doubly Stochastic Form

/)B.N.,barlettl and T L/lndis2  / I

ABSTRACT

New methods for scaling square, nonnegative matrices to dou-
bly stochastic form are described. A generalized version of the
convergence theorem in SINKI-ORN and KNOPP [1967] is proved
and applied to show convergence for these new methods. Tests
indicate that one of the new methods has significantly better aver-
age and worst-case behavior than the Sinkhorn,/Knopp method; for
one of the 3x3 examples in MARS-ALL and OLKIN [1968], SK
requires 130 times as many operations as the new algorithm to
achieve row and column sums 1 _ 10'.

1. Introduction.

We seek an algorithm which will find a pair of :;ositive diagonal matrices D

and E for a given square nonnegative matrix, A, such that DAE is doubly

stochastic--or determine that such :.p h" du:es 7'. -,.xist.

A nonnegative ii xn matrix A is said to have support if it possesses a posi-

tive diagonal; A has total support if A P 0 and every positive entry in A lies on a

positive diagonal. A is fully indecorrposable if it is impossible to find permuta-

tion matrices P and Q so that:

(1.1) PA Q A2A 3 J
with A square.
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Three procedures for computing D and E, when they exist, have appeared

in the iterature: (I) minimize ztAy subject to the constraints

z, y% 1. (2) minimize

(zr, ,x)= =

=1

subject to the constraints

xk >0 k=. ,n and Xk=1

and (3) compute D and E iteratively by alternately normalizing all rows and all

columns in A. The first method is due to MARSLLL and OLKIN [196]; the

second is described in DJOKVIC [1970]. In each case, the minimization problem

is shown to have a solution when A is fully indecomposable. The third algorithm
was first described by DEMING and STEP-AN [19401 who called it the "Iterative

Proportional Fitting Procedure". It was rediscovered by SINI&ORN

[1962,1964.1986,1987), and, SINKHORN and KNOPD [19671 proved that D and E

exist so that D A E is doubly stochastic if and only if A possesses total support.

Further, they showed that in such a case, the iteration converges to a solution

pair D and E. BRUALD], PARTER, and SCHNEIDER [1966] independently proved

the existence of D and E when A is a direct sum of fully indecomposable

matrices by showing that its corresponding Menon operator (MENON [19671) has

a flxed point. Finally, SINKIIORN [1966] showed that the Sinkhorn/Knopp

method converges geometrically for positive starting matrices.

The following result can be applied to show that a nonnegative matrix has

total support if and only if it is a direct sum of fully indecomposable matrices:

The Frobenius-Konig Theorem (MARCUS and MINC [1964],p 97)

A nonnegative n xn matrix without support contains an s x t zero subma-

trix where:

s +t =n +
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In this paper we describe three new iterative procedures for scaling nonne-

gative matrices to doubly stochastic form. We prove a generalized version of the

convergence theorem in SINKEORN and KNOPP [1967] and apply it to show that

for starting matrices with total support, these new iterations converge to diago-

nally equivalent limits which are multiples of doubly stochastic matrices. In the

final--and most interesting--section, we present results of tests comparing our

new methods to the Sinkhorn/Knopp method (SK). One of the new algorthms,

EQ, exhibited significantly better average and worst-case behavior than SK: for

some test matrices, SK required 130 times as maan operations as EQ (where an

operation is a multiply or a divide) and examples for which EQ requires more

than ten times as many operations as SK are rare.

Techniques for scaling to doubly stochastic form have a number of applica-

tions. The problem that launched Sinkhorn's research was estimating the tran-

sition matrix in a Markov chain. .%kRSHALL and OLKIN [1979] contains refer-

ences for other statistical applications. They can be applied to equillibrate a

general matrix with respect to any p-norm, p e -; one of us has used EQ to test

for diagonal equivalence to orthogcnal form by cquillibratnz -ith rcspct to the

2-norm. Finally, we remark that doubly stochastic m&Fr;'ee nssess the follow-

ing interesting properties: (1) They arc "pcrfcctly ba! .ud v.Kth rcspcct to

the 1-norm ( see PARLETT and REINSCH [1962]); (2) Their p-norms are unity for

all p:9 - (see STOER and WITZGALL [ 1962]); and (3) Their inverses--if they exist--

have row and column sums equal to unity (though the inverse of a doubly sto-

chastic matrix is doubly stochastic only for permutation matrices).
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2. Algorithms

In this section, we will describe three iterative procedures for scaling non-

negative matrices to doubly stochastic form. In section three we show that

when they are applied to a matrix with total support, the result is a sequence of

iteration matrices converging to a multiple of a doubly stochastic matrix.

Our first algorithm, DEV, was motivated by the desire to have an algorithm

that would modify a single row or column-leaving the remainder of the matrix

unchanged-at each iterative step. There is a natural way to select the row or

column to be changed: choose one whose sum deviates maximally from the

mean of the row sums (which is also the mean of the column sums). This

approach is reasonable, because matrices with equal row and column sums are

scalar multiples of doubly stochastic matrices. For the same reason, the

natural change is to multiply entries in the selected row or column by a factor

chosen so that its new sum will be the new mean of row sums.

Aigorithm 1 (called DEV, for deviation reduction)

Given A = A101 an n x n matrix:

(1) Compute row and column sums for A:

rT 4- l...,n
j=1

c 4 - fl2= I...

Compute the mean, p. of row sums in A:

n

(2) Find indices p and q so that

r~ p. max' r, -~

and

q max c) -

If rp -/.z < tol A and Cq -,u <tot .go to step 5.
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If cq - / > r. - /& go to step 4.

(3) Calculate the mean T, of row sums other than rp: .1

Scale row p to T:

%j % ap] =1 A. n
rp

Update row and column sums for A:

7*) 4-

rp-

Go to step 2.

(4) Calculate the mean. F, of column sums other than cg:

Scale column q to TA:

-q - a - - 1 , n
C7

Update row and column sums for A:

C q 4-- AL

ri r. + A- - I a-

Go to step 2.

(5) Normalize:

1

Ecit.
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Remarks

Note that step 3 is equivalent to premulttiplying matrix A by a positive diag-

onal matrix:

where

rp

and step 4 is equivalent to post multiplying matrix A by a positive diagonal

matrix:

E = diag ( e, .e.)

where

ej = 1 if q
Cq2=

We say that a row and column pair in a nonnegative matrix is balanced

(with respect to the 1-norm) if they have equal sums. Obviously, all row and

column sums in a multiple of a doubly stochastic matrix are balanced. A second

approach to scaling to doubly stochastic form, then, is to find a row and a

column whose sums have maximal difference and to scale the matrix so that

their sums are equal. This is the approach taken by our second algorithm.

Agorithm 2 (called BAL, for balance)

Given A = AtC) an nxn nonnegative matrix:

(1) Compute row and column sums for A:

j=1

n
cj- j1, f ,n

and the mean of row sums:

p. 4 n j

.4
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(2) Find indices p and q so that:

Irp -cq =max T% -c
%..j

I rp - cq < g- tol go to step 5

(3) Balance row p and column q:

Multiply entries in row p by:

= [c 1/2f = Cq -- a,,q
= p - apq

and multiply entries in column q by f -

(4) Update row and column sums:

i r. n+ (f-- a i= n r

. (rp p- aq)(Cq-Q) + .,

Cq - rp

cj 4- c - (f -i)%j =1, . ,n

n

Go to step 2.

(5) Normalize:

1a~j -- j i, = ,"- ,n

Exit.

Note that step 3 is equivalent to forming the product D A E where:

D = dig (d1, ,d.

ifi pdt j , if i =p

E diag(e, dn)

e - 1, if q,

.... I[... . .. . .. . . .. . I,....... . . . . . .II . . .. . . I Ill .. . . . .... .. .. ' ll li llII -. .. ...
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=f 1  if jq

Now for the third method. When testing DEV we found cases where a

sequence of 10 or more iterations were alternately scaling the same row and the

same column. Our third algorithm is a variant of DEV that avoids this problem.

It records the last row and last column scaled; when it detects a repeat, it per-

forms a balancing step.

Algorithm 3 (called EQ, for equalize)

Given A = AfO) an nxn nonnegative matrix:

(1) Initialize:

lastr - 0

ldstc - 0

ri ' L'j i l

ncj a uj y :1 • ,n

n

(2) Find indices p and q so that:

irp -41 = max r -j

Ic, -A!, = Max !cj - JA:

If Ir. -jul < t tol and : c, -Al < Atol go to step 6.

If rp -A, < :cq -A go to step 4.

(3) If p = lastr go to step 5. Otherwise, calculate the mean, TZ, of row sums

other than rp:

and scale row p to rz: 
-

- _N



'V..

4
-9-

a % 2  - a1 . .a .!

Update row and column sums for A:

C2  4 - CI C "+ '2 -- ipf J -. l

A L- T'

lstr 4- p

Go to step 2.

(4) If q = lastc go to step 5. Otherwise, calculate the mean, i, of column sums

other than cq:

-cj

and scale column q to g:

Cq

Update row and column sums:

ltSC 
4-

r, ',rt + .9 - -- 1 i = 1, nr

[ Cq

lastc

Go to step 2.

(5) Balance row lastr and column lastc ( for convenience let k=lastr and

L =Lastc):

Multiply entries in row k by:

- aki

f jrk-ak



10-

Multiply entries in column I by f -:

a,, - ,i. f n

Update row and column sums:

i '- r, +( 1-)aL i 1 , ' n

Update row and column sums:

ri - ri +(f - 1)a iu . n

),4-- 1(7k-A;~)c aki)(c I a /2 + k

c 14- rk

4 -- ^ c+ (f -1)*, j 1,

Go to 2.

(6) Normalize:

1a~j <- aj z,j =1 n

Exit.

No tation

To simplify the descriptions of the algorithms we have omitted program-

ring details. In particular, we have assumed that all scaling and balancing

operations are carried out explicitly by modifying entries in matrix A. In the

next section, it will be convenient to assume that the iterations are carried out

implicitly by changing entries in a pair of diagonal matrices D and E.

Each algorithm produces a sequence of iteration matrices which are diago-

nally equivalent to the starting matrix A = A(¢):

(2.A) A4k) = D()A E ) (k = 1,2,

D(k) =diag(d jk), .. ,k))



E' k) dig( =

and we set DCC) =E'C)

We introduce the following notation:

A~k

(So, for example, a,,k d= k 2 Lj,)

ck) k

and

Ak k
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3. Convergence

In this section, we will prove that when a starting matrix has total support

each of the algorithms described in section 2 produces a sequence of iteration

matrices which converges to a diagonally equivalent, doubly stochastic limit.

SINKEORN and iKNOPP [1967] showed that when SK is applied to an n xn

nonnegative starting matrix At °) = A possessing nonzero row and column sums,

the result is a sequence of iteration matrices as in (2.1) with the following pro-

perties:

(Pl) The sequence (s: )/=2. is monotonically increasing where:
n

(3.1I) s = [ ( ek k = 1,2,

Sk )

(P2) If lim - : 1 then for i,j , n:
k - S,

lim r 1

lira d 4-- i)-

lurn c = 1

lim= 1

(P3) With the k"' mean of row sums, 11k, defined by (2.3)

p= k = 1,2,

Algorithms which, given an nxn nonnegative starting matrix, A, produce a

sequence of iteration matrices as in (2.1) satsifymg (P1), (P2), and (P3), w l be

called "diagonal product increasing" (DPI). The following result is a simple gen-

eralization of the convergence theorem in SINK.ORN and KNOPP [1967].
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Theorem I

Given a sequence (2. 1) of diagonal equivalents for A satisfying (P 1), (P2), and

(P3):

[i] If A has support then Lim A() exists and is doubly stochastic.

[2] If A has total support then the limit in [ t ] is diagonally equivalent to A.

Before proving the theorem we state and prove a corollary:

Corollary

[I] If A is diagonally equivalent to a doubly stochastic matrix, S, then:

S = im A (")

[2] If A has support and is not diagonally equivalent to a doubly stochastic

matrix, then for each pair of indices (i,j) such that o, does not

lie on a positive diagonal:

lim ajtk) = 0

k-o -

Proof of Corollary-

(1) By Birkhot"'s I'he,.rm (3 HIlUKFOI'P [1946]) the set of rt x n doubly stochastic

matrices is the convex hull of the set of n xn permutation matrices.

Therefore, S and its diagonal equivalent, A, have total support. Now the

theorem implies that lim A(k) is doubly stochastic and diagonally equivalent

to A. Since doubly stochastic equivalents are unique, (see SINKHORN and

KNOPP [ 19671):

Lin A (k) = S

(2) By the theorem, Lim A k) is doubly stochastic, so it has total support, and

Lr a.ij ) = 0 whenever aj does not lie on a positive diagonal.

Note that matrices without support are not covered by the preceding

theorem or its corollary. Such matrices are always singular, and Kki-AN [private

communication] has shown that the sequence of iterition matrices ( Alk' ) pro-

duced by SK cycles for such a starting matrix.
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Proof of Theorem 1:

We Will need the following well known result:

Lemma I (The .4rithmetic / Geometric .ean IneLuaLtity)

If x, ; 0 for i ,. ,n then: n In
with equality only when z, = z . = ... =

(1): (PI) implies (sk)k1 2 is monotonically increasing. Since A has support.

a permutation, a, of 1, n exists such that:

{a .( , I. .. n }

is a positive diagonal in . u\. Lci r:mn T ). Then

d,,'c a d, = aa <_ ='O

(Property (P3) is used for the right hand equaliLy) Dy the arithmetic, guorliertL

inequality:

S= J d",k) !Lt a-n
t=I

and is bounded. Therefore by (PI)

lim sk = L > 0

exists, and

im s = 1
kc-- Sk l

By (P2):

im - = 1 and lim - =

By (P3), since the Ak) are nonnegative, no entry a,,+ can be targer k.han n.

Therefore, for each index pair (i,j) the sequence ( ,ae)) is Cauchy, and
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lir A(k = A"-)

exists. Since the row and column sums in A (-) must be:

limr,(k) = i 1, n

lim C j' ) =c' ,f=1 n

(P2) implies that A -) is doubly stochastic.

(2): To prove the second half of the theorem we will need the following lemma

which is paraphrased from S1NKEORN and KNOPP [1967], p. 345.

Lemma 2

If A is a nonnegative matrix with total support, (zk)) and (y ,k)) are positive

sequences for i = 1, ,n and = 1, ,n and:

lir x (kjk) y -= j > 0

for each index pair (ij) such that. 7 0, then there exist positive

sequences (Ak)) and (jak)) with poiLiVe dniuLs such Llia:

Yj' X, JI fr a1t, ij. and k

Now for the proof. From part (1), we know that limaijk) = tim dt(k)e)a 1

exists for any i and j. If aq 0 then lim rak) e k) exists. Using (P1) we show that

this limit is positive.

If asj 0 0, it lies on a positive diagonal in A, because A has total support. Let

a be a permutation of 1.-n; such that:

a (i) =J

,) > 0 1= 1, ,n

By (P1):

k)e()I dt(k)eM = si k = 1, 2,
(-l

(3.2) c4(h~~e~k)~s | I,.; ekb 12
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Let a =min {a ; atj 1. Then:

d~ - *1

n-I n-I

Now apply the arithmetic/geometric mean inequality:

r= -I 'Hd1(k) e,(

or

(3.3) 1( fnea)

Combining (3.2) and (3.3):

(3.4) dL€k) eta _I .S I > o

which shows that lim d(,)e., ) > 0 whenever ai ? 0. Now we can apply lemma 2

to see that positive sequences (d()Iand (')Iwith positive limits eaist so that:

d(k) U1 fk) =,A: e for eaich ij, and k

Set

)(k) = diag (J)

and

=~k diag ( E ))

then

lir ( = f-) and
k--

urn 'k)=
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exist. Taking limits on both sides of

Dik)A k[k) A A(k)

we obtain

D(-)A E(-) = A(-)

Natura~ly, the Sinkhorn,/Knopp method is product increasing; in the next

theorem, we wiU show that normalized versions of DEV, BAL, and EQ, are too.

Here is another example of a DPI algorithm defined for irreducible, nonnegative

matrices:

Algorithm

At each step: Normalize the rows by finding Y, a positive diagonal matrix, so

that YA(k) has row sums 1. Then normalize the columns by a diagonal similarity

transform defined as follows:

Let x = (zx , • z,,) be a left Perron vector for YA'k):

x YA k) = Ix z

and let K = diag(z . . • .z). Then

A(k+1)= [X tA' )X-.

has column sums I because

(1, ... ,I)A = (1, 1-, )

(Note that the similarity transform leaves diagonal products unchanged)

Next we apply Theorem 1 to show that the algorithms described in section 2

are convergent for starting matrices with total support.

Theorem 2

Suppose that the sequence of iteration matrices

A(k) = D()A E(k ) k = 1. • -n

results from the application of DEV, BAL, or EQ, to A = AMO); then if A has

total support, lim -A ( ) is doubly stochastic and diagonally equivalent to A.
k

Proof

We prove Theorem 2 by showing that the sequence of normalized iteration
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matrices:

(3.5) ACMk) Dk Ar. E (k) L. D (k)l A E(k) k= 1, 2,j ~tk J

satisfies (P1), (P2), and (P3).

(P3) is obviously satisfied by (3.5). Note that:

s= =7n1 {/ [ -(k) j e.(k)

11 (k eik k =1, 2,

DEV:

Suppose that at step k+1 row p is scaled to the mean of the other row sums,

Tz. After the scaling, TI is the mean of row sums, that is:

= -~k+1

and in this case:

n

n) dt~ +- 1)__ eI____k__1

(3.6) s , ( 1 / 1. +4- .____

1'

3.6t Sk + I

Since /Lkt is the mean of row sums other than r tn A(k), and/p. is the mean of

all row sums:

rp + (n - 1)p +1
(37.4,t s , =

A' 1 1
(3.7) 1 zr + (n -/ )J k -. I
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By the arithmetic/geometric mean inequality:

r, . Ak,;, !_! 1

Therefore:

Skl _ Lk 11k

Sk k P*+I r

The above arguement can be repeated for a column scaling at step (k+1), and

(PI) holds. Next define sequences:

(3.8) [zk) J , n

by

P- if i=p and at step (k+ 1) row p is scaled

to the mean of the other row sums

(
k

+ 1) = --- if i=q and at step (k+1) column q is scaled

to the mean of the other column sums

L +1 otherwise

By (3.7), L ;lik) = 1 for each k. Using the arithmetic,/geometric mean
nTi.

inequality it can be shown that from:

Lim i-z($k ) = liSr - 1
/I- - Sk

follows:

lim X,(J ) =1 i =1, ' .,n
Ic--

Since

-) = I--T = rk)- p = 1,

. . . .. I1 II A k +" I I
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Rjki-1) ___

djk) = + for some I

and similarly

=1 or - i = 1.
ei (k)Cq

- i 1o for someI
orX k+ 1)

it follows that:

lim ni 1 t1 f
A: k-

At each step, DEV selects p or q so that

is maimal. It follows that for ij =1. n

r~k) )k

Therefore (P2) holds for the sequence (3.5) produced by DEV.

BAL:

Suppose that at step (k+ i) BAL balances row p and column q. Let:

Z'k -~k fk)

~(k) C ck) (kIc

In this case:

(3.9) Sklt 1/A ~4-1 f

where

'k 1/2

so to show that st~ s., we must show that p'k I Ak
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If A01) is doubly stochastic for some k, then A() = A +1) = and the

theorem is satisfied. Otherwise, for each k, we may assume that

(3.10) r# ) - c k) = X~k) _y k) A 0

With this assumption, if zX( ) 
= 0 or y k = 0 then A cannot have total support-a

contradiction. Therefore, X'  0 and ykk) ? 0, and the denominators for f and

f -1 are never 0.

Entries in A(k) sum to:

(3.11) , ;k)
1~1 i.j=1

f k;)j +X~k) + y'k) + 2ak)

After the balancing step, entries in A(;+') sum to:

(3.12) C + +

so

(3.13) AM+ I =

2= r kk + 2 -n , k k k + 'k kil

=/ + 2- )  + y( k)] J

n

By the arithmetic/geometric mean inequality

2 Vf'/TTy Ck g .T(x) + ykk)

and therefore

(3.14) + ! /2k

By (3.9), -- = 1 1 and sAI >- sA, ie. (P1) is satisfied.
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Suppose that:

(3.15) lim s -._-= I
k~- sk

then by (3.9) and (3. 13):

Ak
t

(3.16) 1 = Lim

=-Lim A
k -- (n ik) + 2 x/ y - (Xlk) + y~k))

n

k/ + ~ yJC (zk) + Ykk))

which implies that

2 =XV - x)

Ak A k k

It follows from the arithmetic/geometric mean inequality, that this is impossible

unless:

tim €-- .--

and

lir max - = 0

The mean of the row sums and the mean of the column sums in A( ) is 1, irnply-

irg:
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r 'k) 5k" )
Lim !!!L= lin ' I
k -- = A k . A =

Equation (3.4) in the proof of Theorem 1 holds whenever (P1) and (P3) are

satisfied, and for each index pair (i,j) such that a,, s 0, the sequence

AkIk= 1. 2.

is bounded away from zero. Therefore, the sequences and H1I are

bounded away from zero, because Xzk) A 0 and Vk) i 0 for each k. We have:

________,u x(k )

(3.17) mn = Lim -= 1

Finally, for each ij, and k:

1)_ k + 1))

Therefore, by (3.15) and (3.17):

(3.18) lim lir ' 1

for each i and j, and (P2) is satisfied.

EQ:

Each step of EQ is a step of DEV or a balancing step. The arguements above

for DEV and BAL show that for each k, sk+ 1 _> sk, ie. that (P1) holds. Consider

the sequence (3.8), and its subsequence

where at steps k' =p ,p2. EQ scaled a row or column to the mean of the

other row or column sums. This sequence must be infinite--because lastr and

taste are set to 0 after each balancing step--and the arguement for DEV can be

repeated to show that:

(3.19) fori,) = 1, n
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tim n - ) = =1,

tim'
k- ek' -

ki- k

Lim C' = 1
k'-- AA;

Next consider the subsequence

k" q1 4q2 '

where at steps k" q 1 ,q2 , EQ balanced a row and column. If this sequence

is infinite, the arguements for BAL (Equations (3.15)-(3. 18)) can be repeated to

show that when Lim -- = 1:
k -- Sk

(3.20) Lin 111k =

k"-. d '

lirn =

Lim t~k' - 1

(3.19) and (3.20) imply that

a(k + ) _____+__

Lim =lim -=

In particular, limA(k) exists, and its row and column sums are:

r.(k) r • )
tim I

c k) 5k)

k-.- -frk) k'- A.4

(P3) holds for the sequence (3.5) produced by EQ.

It is possible to show that each of the sequences id.k) and

(e j')], i = 1, t. produced by SK and HA, are CLuchy. We beiieve the

same to be true for DEV and EQ but are unable to prove it.
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4. Test Results

We ran comparison tests of the algorithms described in this paper and the

Sinkhorn/Knopp method on a collection of 50 10x 10 or smaller matrices.

These tests were run on a VA.X 11,!780 at UC, Berkeley, with 7 significant digits in

single precision and 16 digits in double precision. Sums were accumulated in

double precision.

For convergence to "tol" accuracy, we required that all row and column

sums deviate from the mean, ui, by less than totjL. So, in the normalized

matrices, row and column sums could not deviate from I by more than tol.

The examples in this section were selected to illustrate the following points:

(1) EQ exhibited significantly better average and worst-case behavior than SK.

On our test bed, for convergence to tot = 10 - 5, the ratio of total SK opera-

tions to total EQ operations varied from a low of 1,,2 to a high of more than

130.

(2) We found striking examples where EQ was significantly faster than DEV, BAL,

or SK. Since each iteration by EQ scaled a rcw or co':mn--ike DEV--or bal-

anced a row and column pair--like BAL--Lhere is evidence that some

mechanism is at work which cnabues EQ : opera't&:I

right time.

To facilitate comparing DEV, BAL, and EQ, we counted their "steps' in the

following way: each scaling of a row or column counted as 1 step, and each

balancing of a row/column pair counted as two steps. In this way, the operation

cost (where an operation is a multiplication or division) was the same for each

step of each of the three algorithms.

To facilitate comparing EQ and SK we computed the approximate ratio of

total operations performed by EQ to total operations performed by SK.

These first four examples were the test matrices in MARSI.ALL and OLKIN

[1968]:

o104,02102 102 I 0)

A = 102 i B = 102103 i
102 1 1 0 10210

C = 1 D = 104*, 1
0 1 102 0 104104

* ~-*
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STEPS TO CONVERGENCE FOR MATRIX A

SK OPERATION.LS]

TOL DEV BAL EQ SK [ OPERATIONS
EQOPFRA TIONS

10-2 2 18 2 1 .9

10-  2 20 2 1 .9

10.4  2 26 2 1 .9

10-5 2 32 2 1 .9

S TEPS TO CONVERGENCE FOR MARX B

TOL DEV BAL EQ SK [EQSK OPERAT!O.VSJ

10
-
2 102 1 21 38 3.3

10-3 201 24 26 75 5.3

10-4  302 34 37 113 5.5

10 - 5 402 34 46 150 6.0
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STEPS TO CONVERGENCE FOR ATRfX C

TOL DEV BAL EQ SK V KOERTOS
EQ OPERATIONS

10-2 24 18 11 10 1.7

10-3 80 24 19 307 29.8

10-4 1656 30 38 1092 53.1

10-5 3281 34 49 1899 71.5

STEPS TO CONVERGENCE FOR \MATRLX Di

TOL DX' SL EQ K {SK OPERATIONS
SEQ OPERATIONS

1O-2 231 22 21 84 7.4

10-3 1895 26 32 706 40.7

10-4 4891 3 2 34 1830 99.4

10-5 7961 40 40 2983 137.7
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Our next examples, R and S, are (5 x 5) matrices. They illustrate the curi-

ous fact mentioned in (2) above.

1001i 0 0 0

0 200 1 0 0
R= 0 0 300 1 0

0 0 0 400 1100 0 0 01 0 0 0 500

STEPS TO CONVERGENCE FOR %ATRIX R

TOL DEV BAL EQ SK SE OPERATIONSEQ OPERATIONS J

10-2 10 14 9 1 .4

10 - 3 115 28 31 214 24.4

10-4  1682 2474 51 630 43.6

10 - 5 3912 4086 68 1067 55.4
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400 1 1 1
1800 1 1
1- 1 120 0 1
1 1 1 160 0
0 1 1 1 200

STEPS TO CONVERGENCE FOR MATRIX S

TOL DEV BAL EQ SK EQK OPERATIONSEQOPERA TION'S]J

10-2 39 20 16 15 3.3

10-  206 100 29 53 6.5

10 -4  384 108 47 94 7.1

10-5 570 198 62 136 7.7
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Our final five examples are (10 x 10) upper Kessenberg matrices:

0 if 4<i-1
H, h, where h.1 = [I otheruse

H2, H3 , and H 4, each differ from H1 in a single entry:

the (1.1) entry in H2 is 100

the (1,2) entry in H3 is 100

the (1.3) entry in H 4 is 100

H. is the result of replacing all diagonal entries in H, by 100.

Here is a summary of the results for tol = 10-:

-4

STEPS TO CONVERGENCE FOR M%AFliCE'S N. = 1, .5

MATRIX 0 EV BAL EQ SK SK OPERATIONS1
EQ OPERATIONS)

H, 612 748 812 55 .6

H 2  873 926 717 72 .8

H 3  925 952 775 71 .7

H4  953 94B 921 71 .6

H. 14476 17456 917 1004 8.9

....................
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Appendix: Sample Iteration matrices for EQ and SK

The following pages contain sample iteration matrices for EQ and SK when
applied to matrices C and D. Normalized iteration matrices, DAE. are printed
with their row and column sums and deviations.
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